Penerapan Ilmu Fisika dalam Kehidupan Sehari-hari
Banyak
peristiwa dalam kehidupan kita yang melibatkan ilmu Fisika baik kita
sadari maupun tanpa kita sadari. Semakin kita memahami Fisika kita akan
mengetahui bahwa Fisika mempunyai cakupan yang luas. Berikut adalah
contoh aplikasi ilmu Fisika dalam kehidupan sehari-hari.
Aplikasi Gerak Lurus Beraturan
Gerak Lurus Beraturan (GLB) merupakan gerak yang memiliki
kecepatan yang konstan. Walaupun GLB sulit ditemukan dalam kehidupan
sehari-hari, karena biasanya kecepatan gerak benda selalu berubah-ubah.
Contoh pertama: kendaraan yang melewati jalan tol. Walaupun terdapat tikungan pada jalan tol, kendaraan beroda bisa melakukan GLB pada jalan tol hal ini jika lintasan tol lurus. Kendaraan yang bergerak pada jalan tol juga kadang mempunyai kecepatan yang tetap.
Contoh kedua, gerakan kereta api atau kereta listrik di atas rel. Lintasan rel kereta kadang lurus, walaupun jaraknya hanya beberapa kilometer. Kereta api melakukan GLB ketika bergerak di atas lintasan rel yang lurus tersebut dengan laju tetap.
Contoh ketiga : kapal laut yang menyeberangi lautan atau samudra. Ketika melewati laut lepas, kapal laut biasanya bergerak pada lintasan yang lurus dengan kecepatan tetap. Ketika hendak tiba di pelabuhan tujuan, biasanya kapal baru mengubah haluan dan mengurangi kecepatannya.
Contoh keempat : gerakan pesawat terbang. Pesawat terbang juga biasa melakukan GLB. Setelah lepas landas, pesawat terbang biasanya bergerak pada lintasan lurus dengan dengan laju tetap. Walaupun demikian, pesawat juga mengubah arah geraknya ketika hendak tiba di bandara tujuan.
Contoh pertama: kendaraan yang melewati jalan tol. Walaupun terdapat tikungan pada jalan tol, kendaraan beroda bisa melakukan GLB pada jalan tol hal ini jika lintasan tol lurus. Kendaraan yang bergerak pada jalan tol juga kadang mempunyai kecepatan yang tetap.
Contoh kedua, gerakan kereta api atau kereta listrik di atas rel. Lintasan rel kereta kadang lurus, walaupun jaraknya hanya beberapa kilometer. Kereta api melakukan GLB ketika bergerak di atas lintasan rel yang lurus tersebut dengan laju tetap.
Contoh ketiga : kapal laut yang menyeberangi lautan atau samudra. Ketika melewati laut lepas, kapal laut biasanya bergerak pada lintasan yang lurus dengan kecepatan tetap. Ketika hendak tiba di pelabuhan tujuan, biasanya kapal baru mengubah haluan dan mengurangi kecepatannya.
Contoh keempat : gerakan pesawat terbang. Pesawat terbang juga biasa melakukan GLB. Setelah lepas landas, pesawat terbang biasanya bergerak pada lintasan lurus dengan dengan laju tetap. Walaupun demikian, pesawat juga mengubah arah geraknya ketika hendak tiba di bandara tujuan.
Aplikasi GLBB dalam kehidupan sehari-hari.
GLBB merupakan gerak lurus berubah beraturan. Berubah
beraturan maksudnya kecepatan gerak benda bertambah secara teratur atau
berkurang secara teratur. Perubahan kecepatan tersebut dinamakan
percepatan. Pada kasus kendaraan beroda misalnya, ketika mulai bergerak
dari keadaan diam, pengendara biasanya menekan pedal gas (mobil) atau
menarik pedal gas (motor). Pedal gas tersebut biasanya tidak ditekan
atau ditarik dengan teratur sehingga walaupun kendaraan kelihatannya
mulai bergerak dengan percepatan tertentu, besar percepatannya tidak
tetap alias selalu berubah-ubah.
Contoh GLBB dalam kehidupan sehari-hari pada gerak horizontal alias mendatar nyaris tidak ada. Dengan penerapan ilmu fisika, GLBB dapat ditemukan dalam kegiatan kita sehari-hari. Contohnya buah mangga atau buah kelapa yang jatuh dari pohonnya. Jika kita pernah jatuh dari atap rumah tanpa sadar kita juga melakukan GLBB.
Sinar-X adalah sebuah fenomena yang ditemukan oleh Rontgen pada laboratoriumnya. Sebuah fenomena yang kemudian menjadi awal pencitraan medis (medical imaging) pertama, tangan kiri istrinya menjadi uji coba eksperimen penemuan ini. Inilah menjadi titik awal penggunaan pencitraan medis untuk mengetahui struktur jaringan manusia tanpa melalui pembedahan terlebih dahulu. Penemuan ini juga menjadi titik awal perkembangan fisika medis di dunia, yang memfokuskan aplikasi ilmu fisika dalam bidang kedokteran.
Eksperimen Röntgen terhadap tangan istrinya, menjadi inspirasi produksi alat yang dapat membantu dokter dalam diagnosa terhadap pasien, dengan mengetahui citra tubuh manusia. Citra atau gambar yang dihasilkan dari sinar-X ini sifatnya adalah membuat gambar 2 dimensi dari organ tubuh yang dicitrakan dengan memanfaatkan konsep atenuasi berkas radiasi pada saat berinteraksi dengan materi. Gambar atau citra objek yang diinginkan kemudian direkam dalam media yang kemudian dikenal sebagai film. Dari Gambar yang diproduksi di film inilah informasi medis dapat digali sesuai dengan kebutuhan klinis yang akan dianalisis.
Tahun 1971, seorang fisikawan bernama Hounsfield memperkenalkan sebuah hasil karyanya yang dikenal dengan Computerized Tomography atau yang lazim dikenal dengan nama CT Scan. Citra / gambar hasil CT dapat menujukan struktur tubuh kita secara 3 dimensi, sehingga secara medis dapat dijadikan sebagai sebuah alat bantu untuk penegakan diagnosa yang dibutuhkan. Untuk mengabadikan penemunya dalam CT terdapat bilangan CT atau Hounsfield Unit (HU), namun penemuan ini juga merupakan jasa Radon dan Cormack.
Tahun 1990an, sebuah perangkat yang dikenal dengan nama Magnetic Resonance Imaging (MRI), terobosan baru yang tidak menggunakan radiasi pengion seperti CT dan sinar Rontgen untuk dapat menghasilkan sebuah citra dengan resolusi yang yang sangat baik dalam mencitrakan struktur tubuh manusia khususnya organ kepala. Inventor MRI mendapat ganjaran hadiah nobel bidang fisiologi dan kedokteran tahun 2003.
Dengan karya fisikawan, insinyur, ahli komputer muncullah sebuah teknologi yang digunakan untuk penegakan diagnosa. Banyak teknologi lain yang dikembangkan oleh para fisikawan dan ilmuwan lain untuk kedokteran seperti halnya ultrasonografi, linear accelerator untuk radioterapi, dan juga CT dan USG 4 Dimensi.
Di bidang kedokteran, teknik nuklir memberikan kontribusi yang tidak kalah besar, yaitu, terapi three dimensional conformal radiotherapy (3D-CRT), yang dapat mengembangkan metode pembedahan dengan menggunakan radiasi pengion sebagai pisau bedahnya. Dengan teknik ini, kasus-kasus tumor ganas yang sulit dijangkau dengan pisau bedah konvensional menjadi dapat diatasi, bahkan tanpa merusak jaringan lainnya.
David Beckham, Zinedine Zidane, Luis Figo, Roberto Carlos, Alessandro Del Piero, dan Andrea Pirlo merupakan pemain yang memiliki tendangan bebas (free kick) yang mematikan. Kiper sehebat Buffon, Casillas, Smeichel, Van Der Sar, dan Bartez pernah merasakan kehebatan tendangan bebas tersebut. Kiper-kiper tersebut tak berkutik ketika bola melewati pagar betis dan tanpa “permisi” masuk ke dalam gawang.
Tendangan bebas yang sering berujung gol tersebut dikenal dengan sebutan tendangan pisang. Disebut tendangan pisang karena bola yang ditendang akan membentuk lintasan melengkung ke samping seperti bentuk buah pisang. Bagaimana tendangan pisang ini dapat terjadi? Melalui fisika kita dapat menjelaskan peristiwa tersebut.
Pemain-pemain yang memiliki kemampuan tendangan pisang tersebut menendang bola sedikit di bawah pusat berat bola dengan ujung sepatunya. Tendangan seperti ini merupakan gaya sentripental yang membuat bola melambung dan berputar (spin). Ketika bola bergerak aliran udara mengalir berlawanan arah dengan arah gerak bola.
Putaran bola akan mempercepat aliran udara di daerah A (perhatikan gambar) sehingga di daerah ini kecepatan udara lebih besar dibandingkan dengan kecepatan udara di daerah B. Menurut Bernoulli semakin cepat aliran udara maka tekanannya semakin rendah. Tekanan di daerah A lebih kecil dibandingkan dengan tekanan di daerah B. Perbedaan tekanan ini menimbulkan gaya tekan dari B ke A. Gaya tekan ini akan membuat bola berbelok membentuk lintasan yang melengkung seperti pisang. Peristiwa melengkungnya bola ini dalam fisika sering disebut Efek Magnus. Kalau kalian ingin menguasi tehnik tendangan pisang perlu latihan yang giat. Bagaimana?? Fisika itu memang asyik ya!!
Matras dimanfaatkan untuk memperlambat waktu kontak. Waktu kontak yang relatif lebih lama menyebabkan gaya menjadi lebih kecil sehingga tubuh kita tidak terasa sakit pada saat jatuh atau dibanting di atas matras.
Contoh GLBB dalam kehidupan sehari-hari pada gerak horizontal alias mendatar nyaris tidak ada. Dengan penerapan ilmu fisika, GLBB dapat ditemukan dalam kegiatan kita sehari-hari. Contohnya buah mangga atau buah kelapa yang jatuh dari pohonnya. Jika kita pernah jatuh dari atap rumah tanpa sadar kita juga melakukan GLBB.
Aplikasi gerak vertikal dalam kehidupan sehari-hari :
Gerak vertikal terdiri dari dua jenis, yakni gerak vertikal ke atas dan gerak vertikal ke bawah. Benda melakukan gerak vertikal ke atas atau ke bawah jika lintasan gerak benda lurus. Kalau lintasan miring, gerakan benda tersebut termasuk gerak parabola. Aplikasi gerak vertikal dalam kehidupan sehari-hari misalnya ketika kita melempar sesuatu tegak lurus ke bawah (permukaan tanah), ini termasuk gerak vertikal.Aplikasi gelombang elektromagnetik:
Konsep gelombang elektromagnetik ternyata sangat luas tidak hanya berkaitan dengan TV atau handphone saja, melainkan banyak aplikasi lain yang bisa sering kita temukan sehari-hari di sekitar kita. Aplikasi tersebut meliputi microwave, radio, radar, atau sinar-x.Sinar-X adalah sebuah fenomena yang ditemukan oleh Rontgen pada laboratoriumnya. Sebuah fenomena yang kemudian menjadi awal pencitraan medis (medical imaging) pertama, tangan kiri istrinya menjadi uji coba eksperimen penemuan ini. Inilah menjadi titik awal penggunaan pencitraan medis untuk mengetahui struktur jaringan manusia tanpa melalui pembedahan terlebih dahulu. Penemuan ini juga menjadi titik awal perkembangan fisika medis di dunia, yang memfokuskan aplikasi ilmu fisika dalam bidang kedokteran.
Eksperimen Röntgen terhadap tangan istrinya, menjadi inspirasi produksi alat yang dapat membantu dokter dalam diagnosa terhadap pasien, dengan mengetahui citra tubuh manusia. Citra atau gambar yang dihasilkan dari sinar-X ini sifatnya adalah membuat gambar 2 dimensi dari organ tubuh yang dicitrakan dengan memanfaatkan konsep atenuasi berkas radiasi pada saat berinteraksi dengan materi. Gambar atau citra objek yang diinginkan kemudian direkam dalam media yang kemudian dikenal sebagai film. Dari Gambar yang diproduksi di film inilah informasi medis dapat digali sesuai dengan kebutuhan klinis yang akan dianalisis.
Tahun 1971, seorang fisikawan bernama Hounsfield memperkenalkan sebuah hasil karyanya yang dikenal dengan Computerized Tomography atau yang lazim dikenal dengan nama CT Scan. Citra / gambar hasil CT dapat menujukan struktur tubuh kita secara 3 dimensi, sehingga secara medis dapat dijadikan sebagai sebuah alat bantu untuk penegakan diagnosa yang dibutuhkan. Untuk mengabadikan penemunya dalam CT terdapat bilangan CT atau Hounsfield Unit (HU), namun penemuan ini juga merupakan jasa Radon dan Cormack.
Tahun 1990an, sebuah perangkat yang dikenal dengan nama Magnetic Resonance Imaging (MRI), terobosan baru yang tidak menggunakan radiasi pengion seperti CT dan sinar Rontgen untuk dapat menghasilkan sebuah citra dengan resolusi yang yang sangat baik dalam mencitrakan struktur tubuh manusia khususnya organ kepala. Inventor MRI mendapat ganjaran hadiah nobel bidang fisiologi dan kedokteran tahun 2003.
Dengan karya fisikawan, insinyur, ahli komputer muncullah sebuah teknologi yang digunakan untuk penegakan diagnosa. Banyak teknologi lain yang dikembangkan oleh para fisikawan dan ilmuwan lain untuk kedokteran seperti halnya ultrasonografi, linear accelerator untuk radioterapi, dan juga CT dan USG 4 Dimensi.
Aplikasi energi (nuklir) dalam kehidupan sehari-hari:
Teknologi dan teknik penggunaan nuklir dapat memberikan manfaat dan kontribusi yang besar untuk pembangunan ekonomi dan kesejahteraan rakyat. Misalnya, nuklir dapat digunakan di bidang pertanian, seperti pemuliaan tanaman Sorgum dan Gandum dengan melalui metode induksi mutasi dengan sinar Gama.Di bidang kedokteran, teknik nuklir memberikan kontribusi yang tidak kalah besar, yaitu, terapi three dimensional conformal radiotherapy (3D-CRT), yang dapat mengembangkan metode pembedahan dengan menggunakan radiasi pengion sebagai pisau bedahnya. Dengan teknik ini, kasus-kasus tumor ganas yang sulit dijangkau dengan pisau bedah konvensional menjadi dapat diatasi, bahkan tanpa merusak jaringan lainnya.
APLIKASI ALAT-ALAT YANG BERHUBUNGAN DENGAN FISIKA
Aplikasi Bernoulli Tendangan Pisang
David Beckham, Zinedine Zidane, Luis Figo, Roberto Carlos, Alessandro Del Piero, dan Andrea Pirlo merupakan pemain yang memiliki tendangan bebas (free kick) yang mematikan. Kiper sehebat Buffon, Casillas, Smeichel, Van Der Sar, dan Bartez pernah merasakan kehebatan tendangan bebas tersebut. Kiper-kiper tersebut tak berkutik ketika bola melewati pagar betis dan tanpa “permisi” masuk ke dalam gawang.
Tendangan bebas yang sering berujung gol tersebut dikenal dengan sebutan tendangan pisang. Disebut tendangan pisang karena bola yang ditendang akan membentuk lintasan melengkung ke samping seperti bentuk buah pisang. Bagaimana tendangan pisang ini dapat terjadi? Melalui fisika kita dapat menjelaskan peristiwa tersebut.
Pemain-pemain yang memiliki kemampuan tendangan pisang tersebut menendang bola sedikit di bawah pusat berat bola dengan ujung sepatunya. Tendangan seperti ini merupakan gaya sentripental yang membuat bola melambung dan berputar (spin). Ketika bola bergerak aliran udara mengalir berlawanan arah dengan arah gerak bola.
Putaran bola akan mempercepat aliran udara di daerah A (perhatikan gambar) sehingga di daerah ini kecepatan udara lebih besar dibandingkan dengan kecepatan udara di daerah B. Menurut Bernoulli semakin cepat aliran udara maka tekanannya semakin rendah. Tekanan di daerah A lebih kecil dibandingkan dengan tekanan di daerah B. Perbedaan tekanan ini menimbulkan gaya tekan dari B ke A. Gaya tekan ini akan membuat bola berbelok membentuk lintasan yang melengkung seperti pisang. Peristiwa melengkungnya bola ini dalam fisika sering disebut Efek Magnus. Kalau kalian ingin menguasi tehnik tendangan pisang perlu latihan yang giat. Bagaimana?? Fisika itu memang asyik ya!!
Aplikasi Impuls dan Momentum
Fisika merupakan ilmu yang mempelajari materi dan interaksinya.
Banyak konsep-konsep fisika yang bisa menjelaskan fenomena-fenomena di
alam. Salah satunya penerapan konsep impuls dan momentum. Impuls adalah
gaya yang bekerja pada benda dalam waktu yang relatif singkat, sedangkan
momentum merupakan ukuran kesulitan untuk memberhentikan (mendiamkan)
benda. Impuls dipengaruhi oleh gaya yang bekerja pada benda dalam selang
waktu tertentu sedangkan momentum dipengaruhi oleh massa benda dan
kecepatan benda tersebut. Berikut ini disajikan beberapa contoh
penerapan konsep impuls dan momentum dalam kehidupan sehari-hari:
1. Karateka
Apakah anda seorang karateka atau penggemar film action? Jika kita
perhatikan karateka setelah memukul lawannya dengan cepat akan menarik
tangannya. Ini dilakukan agar waktu sentuh antara tangan dan bagian
tubuh musuh relatif singkat. Hal ini berakibat musuh akan menerima gaya
lebih besar. Semakin singkat waktu sentuh, maka gaya akan semakin besar.
2. Mobil
Ketika sebuah mobil tertabrak, mobil akan penyok. Penggemudi yang
selamat akan pergi ke bengkel untuk ketok magic. Lho kok jadi ngomongin
ketok magic ya…Ok cukup ketok magicnya. Mobil didesain mudah penyok
dengan tujuan memperbesar waktu sentuh pada saat tertabrak. Waktu sentuh
yang lama menyebabkan gaya yang diterima mobil atau pengemudi lebih
kecil dan diharapkan keselamatan penggemudi lebih terjamin.
3. Balon udara pada mobil dan sabuk pengaman
Desain mobil yang mudah penyok tidak cukup untuk menjamin
keselamatan pengemudi pada saat tetabrak. Benturan yang keras penggemudi
dengan bagian dalam mobil dapat membahayakan keselamatan pengemudi.
Untuk meminimalisir resiko kecelakaan tersebut, pabrikan mobil ternama
menydiakan balon udara di dalam mobil (biasanya di bawah setir). Ketika
terjadi kecelakaan pengemudi akan menekan tombol dan balon udara akan
mengembang, sehingga waktu sentuh antara kepala atau bagian tubuh yang
lain lebih lama dan gaya yang diterima lebih kecil. Sabuk pengaman juga
didesain untuk mengurangi dampak kecelakaan. Sabuk pengaman didesain
elastis.
4. Sarung Tinju
Chris John seorang petinju juara dunia asal Indonesia (hebat ya)
pada saat bertinju menggunakan sarung tinju. Sarung tinju yang dipakai
oleh para petinju ini berfungsi untuk memperlama bekerjanya gaya impuls
ketika memukul lawannya, pukulan tersebut memiliki waktu kontak yang
lebih lama dibandingkan memukul tanpa sarung tinju. Karena waktu kontak
lebih lama, maka gaya yang bekerja juga semakin kecil sehingga sakit
terkena pukulan bisa dikurangi.
5. Palu
Kepala palu dibuat dari bahan yang keras misalnya besi atau baja.
Kenapa tidak dibuat dari kayu atau bambu ya? Kan lebih mudah mendapatkan
kayu dan bambu, nggak mahal lagi (hemat atau pelit kambuh!!!) Palu
dibuat dengan bahan yang keras agar selang waktu kontak menjadi lebih
singkat, sehingga gaya yang dihassilkan lebih besar. Jika gaya impuls
besar maka paku yang dipukul dengan palu akan tertancap lebih dalam.
6. Matras
Waktu pelajaran olahraga di sekolah dulu guruku akan mengambil
nilai lompat tinggi. Galah yang dipasang horizontal nggak terlalu tinggi
sekitar 1-1,2 meter terus di bawah galah diletakan matras.Matras dimanfaatkan untuk memperlambat waktu kontak. Waktu kontak yang relatif lebih lama menyebabkan gaya menjadi lebih kecil sehingga tubuh kita tidak terasa sakit pada saat jatuh atau dibanting di atas matras.
Sumber Referensi :